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Abstract. We present a statistical method for complex energy landscape exploration which provides infor-
mation on the metastable states—or valleys—actually explored by an unperturbed aging process following
a quench. Energy fluctuations of record size are identified as the events which move the system from one
valley to the next. This allows for a semi-analytical description in terms of log-Poisson statistics, whose
main features are briefly explained. The bulk of the paper is devoted to thorough investigations of Ising
spin glasses with Gaussian interactions of both short and long range, a well established paradigm for glassy
dynamics. Simple scaling expressions with universal exponents for (a) barrier energies, (b) energy minima,
and (c) the Hamming distance as a function of the valley index are found. The distribution of residence
time inside valleys entered at age tw is investigated, along with the distribution of time at which the
global minimum inside a valley is hit. Finally, the correlations between the minima of the landscape are
presented. The results fit well into the framework of available knowledge about spin glass aging. At the
same time they support a novel interpretation of thermal relaxation in complex landscapes with multiple
metastable states. The marginal stability of the attractors selected is emphasized and explained in terms
of geometrical properties of the landscape.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
65.60.+a Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc. –
75.10.Nr Spin-glass and other random models

1 Introduction

Physical properties of glassy systems quenched from a
high temperature slowly change with the time or age
tw elapsed since the quench. For any tw well below the true
equilibration time, the dynamics deceptively appears to be
stationary when observed on time scales shorter than tw.
Experimental and numerical evidence for the presence of
a quasi-stationary fluctuations regime for t � tw followed
by non-equilibrium drift for t � tw, stems e.g. from mea-
surements of conjugate linear response and autocorrela-
tion functions [1–3] which obey, respectively violate, the
fluctuation-dissipation theorem in the two regimes. In gen-
eral, the (apparent) age of the system can be deduced from
the decrease in the rate of change of macroscopic averages.
This apparent age can however be ‘reset’ to an earlier
value by applying a perturbation of short duration, as e.g.
a temperature pulse, which thus rejuvenates the system.

Non-equilibrium memory effects such as aging and re-
juvenation were first noticed and studied in a spin glass
context [4–7], but are now observed in a variety of glassy
systems [8–12]. Expanding a previous brief exposition [13],
we describe and test a statistical approach to landscape
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explorations designed to find the generic properties of the
energy landscape which produce these effects.

We find that the dynamical events marking the transi-
tion between the quasi-equilibrium and the off-equilibrium
dynamical regimes lead to a large release of trapped en-
ergy through considerable configuration rearrangements.
Our main point is that these events are triggered by the
attainment of energy values of record magnitude, which
immediately allows a description of the non-equilibrium
dynamics in terms of a log-Poisson process [14,15], i.e. a
stochastic process which is homogeneous when viewed on
a logarithmic time scale.

The sequel is organized as follows: the next section
introduces the landscape exploration method. Section 3
briefly explains the relevant properties of the log-
Poisson statistics used throughout the paper as a semi-
analytical description of non-equilibrium dynamics. Sec-
tion 5 presents results of an extensive application of the
method to spin glass systems, demonstrating the viability
of the method and the usefulness of the log-Poisson de-
scription. Section 6 puts the results in a broader perspec-
tive, with special reference to coarse-grained mesoscopic
models of configuration space. In particular, we discuss
the connection between aging in thermalizing systems and
in dissipative driven system and biological evolution. Sec-
tion 7 is a summary and an outlook.
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The nature of true equilibrium and the final stages of
thermal relaxation are only weakly related to the dynami-
cal regime investigated, as stressed by the similar behavior
found for systems having quite different thermodynamical
properties. Accordingly, little theoretical consideration is
given to equilibrium aspects in the paper.

2 The method

In models of driven dissipative systems with multiple at-
tractors [10,14,16], marginally metastable attractors with
an a priori negligible statistical weight are nevertheless
those typically selected by the dynamics. In such systems,
this mechanism underlies memory and rejuvenation effects
analogous to those observed in the thermalization of e.g.
spin glasses [17] after a quench. One can speculate that
similar mechanisms could generally be present in glassy
systems with an extensive number of metastable attrac-
tors. However, the issue of attractor selection is not ex-
plicitly considered in widely used landscape exploration
methods such as the Stillinger-Weber approach [18–22],
which study a set of local energy minima (inherent
structures) generated by quenches. The same applies to
exhaustive landscape exploration techniques [23–25] and
studies of the real space morphology of low-energy exci-
tations by techniques requiring quenches [26], genetic al-
gorithms [27] and energy minimization of excitations of
fixed volume [28,29].

The ability of small external perturbations to induce
strong rejuvenation and memory effects in complex dy-
namics strongly suggests that any probe introducing ex-
traneous elements in the dynamical evolution might at the
same time yield a biased picture of the energy landscape.
In other words: are the attractors identified also those
which would be selected by e.g. the unperturbed thermal-
ization process after a deep quench or any other dynamical
evolution of interest? Analyzing the regions of state space
surrounding inherent structures states provides valuable
information about the quasi-equilibrium (fluctuation) dy-
namics in the energy landscape, but it does not tell the
whole story. The question of how to properly describe
the non-equilibrium process of ‘selecting’ the metastable
states is still open. This question motivates the present
approach which is based solely on statistical information
collected during an undisturbed aging process.

Conventionally, a valley is a connected neighborhood
of configuration space which supports a state of approxi-
mate thermal equilibrium centered on a local energy min-
imum. During the time a trajectory ‘resides’ in a valley,
the energy and other physical quantities fluctuate around
a fixed average, and the state of lowest energy is often
revisited; the dynamics has a recurrent character. Non-
equilibrium events, henceforth ‘quakes’, move the system
irreversibly from the neighborhood of the initial local en-
ergy minima of high value and into progressively deeper
valleys. A sequence of such events seldom or never revisits
the same configurations and has a transient character.

As widely recognized, the lack of time translational
invariance in aging systems stems from the dynamical

in-equivalence of the valleys visited. Consider therefore
a landscape with multiple valleys of varying degrees of
metastability, or depth. On time scales larger than the
residence time of the deepest (i.e. most stable) valley seen
up to the age t, all valleys shallower than this valley are,
by definition, unstable and hence irrelevant for the non-
equilibrium dynamics. The interesting dynamical objects
are thus the valleys deeper than the deepest valley seen
up to time t. This points to energy records as prospective
markers of the non-equilibrium events.

We shall use the term ‘energy barrier’ to denote the
difference between the energy of the current state and the
lowest seen or best-so-far energy minimum. The lowest
energy minimum value and the highest energy barrier ob-
served up to time t will identify the valleys as they suc-
cessively appear in the landscape.

Our classification procedure of the undisturbed dy-
namics is as follows: We save the minima and barriers
of record values encountered and the times at which they
occur. We stipulate that a valley is entered at time t if the
barrier record achieved at time t happens to be the last
one prior to the attainment of a energy minimum record.
To leave a valley, a barrier record must again be followed
by a record in the lowest energy. Whenever several min-
ima records are found between two barrier records, we
only keep the latest, and therefore deepest, minimum.

In short, we operationally identify the valleys
encountered by a series of minima records with at least one
barrier event between them. Note that this selection pro-
cedure must be performed retrospectively, since it is im-
possible to know ‘on the fly’ whether a new valley has been
entered or not. We also stress that the barrier records will
not necessarily coincide with the lowest barrier separating
two consecutive energy minima records, as the dynamics,
due to entropic effects, is not likely to follow the path of
lowest energy, an effect noticed by Wevers et al. [30] in
the landscape of metastable ionic compounds.

The discovery of a new record in low energy is a
non-equilibrium event. However, by no means does it im-
ply that the internal dynamics in a valley is entirely
equilibrium-like. Several sub-valleys are typically explored
before the energy minimum is encountered which eventu-
ally remains as the lowest state within the valley. Only
then does the dynamics acquire the recurrent, fluctuation-
like nature which is characteristic of quasi-equilibrium.

Resetting the highest barrier to zero at an arbitrary
point in time produces numerous barrier records but no
new valleys before a lower energy value is again recorded.
However, resetting both the record energy and barrier val-
ues to zero may result in a series of new records being reg-
istered, which describe sub-valleys within the valley origi-
nally explored. By repeating the simulation with the exact
same random numbers, this procedure allows one to take
a closer look at the internal structure of a valley if the
resetting is done at the time of entry.

The method presented is generally applicable, easily
implemented, and does not add much to the total runtime
of a simulation. If the energy landscape explored is simple,
e.g. if it contains one large, structureless valley or if it is
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perfectly periodic, our scheme only detects a single valley,
since degenerate and hence dynamically equivalent min-
ima are appropriately lumped together. In other words,
our method produces simple results when used on simple
systems. In the following sections we show that non-trivial
results are indeed the outcome when complex landscapes
are explored.

3 Log-Poisson statistics

In this section we introduce and motivate the log-Poisson
statistics used through the paper as an idealized analytical
description of non-equilibrium events—such as the quakes
which lead to new valleys. We mainly focus on the conse-
quences and predictions for various quantities of physical
interest, leaving the empirical justification of the formal-
ism to the next section, where the data are also presented.

A log-Poisson description of complex dynamics was
first introduced in connection with a model of Charge
Density Waves [14], and later used to explain macro-
evolutionary patterns from the fossil record [31,32]. It de-
scribes [33] the coarse grained dynamics of a population
evolving in a NK landscape [34], and there are indications
that it might also apply to far more realistic models of
evolution [35].

The familiar Poisson process with the time argument
replaced by its logarithm is in short denoted log-Poisson:

Pk(t) =
(α ln t)k

k!
t−α, t ≥ 1. (1)

As shown in [14,32], the probability that k records oc-
cur in a sequence of t random numbers is given by equa-
tion (1), independently of the underlying process gener-
ating the numbers. Log-Poisson statistics implies that the
tempo at which the events occur falls off as 1/t. Switch-
ing to log t as the independent variable gives a constant
(logarithmic) rate of events, and restores time homogene-
ity. Several other interesting mathematical properties of
log-Poisson processes are listed below together with their
physical implications for the spin glass problem at hand.

The probability that k ‘events’ occur between tw and
tw + t for tw ≥ 1 and t > 0 is [15]

Pk(tw, tw + t) =
1
k!

[
α ln

(
tw + t

tw

)]k [
tw + t

tw

]−α

. (2)

Consider a function c(m, m + k) describing the effect of
k events, for example the overlap between the configura-
tions of lowest energy in valleys m and m + k. To connect
with the thermal correlation C(tw, tw + t), we can utilize
a cartoon rendering of the coarse-grained non-equilibrium
dynamics as a one dimensional walk on a set of states cor-
responding to the minima of the valleys, which is similar
to e.g. one of the basic assumptions of reference [36]. We
assume, in our terminology, that the dynamical trajecto-
ries of an aging system dwell at the bottom of the ‘current’
valley for a certain residence time, until a quake instan-
taneously moves them to the bottom of the next valley.

This coarse grained picture neglects the internal structure
of the valleys, which is questionable since the time spent
searching for the bottom state within a valley is of the
same order of magnitude as the full residence time, see
e.g. Figure 7. Nevertheless, the cartoon has the virtue of
simplicity, and allows us to write

C(tw, tw + t) =
∑
m,k

Pm(tw)Pk(tw, tw + t)c(m, m+ k). (3)

which is a function of t/tw if and only if c(m, m + k) is
independent of m. This pure or full aging form has very
recently been shown to describe aging in real spin glasses,
if cooling rate effects through the critical temperature
are accounted for [37]. The assumption that c(m, m + k)
only depends on a single argument has been checked sepa-
rately, and an additional dependence on the valley index m
has been found, which entails a deviation from t/tw scal-
ing [38] for the numerical models.

For later convenience we finally note that, if tk marks
the time of the kth event in a log-Poisson process occurring
after t, the ‘log-waiting time’ log(tk) − log(t) is exponen-
tially distributed, in perfect analogy to the usual Poisson
process. The same exponential distribution also describes
the series of independent variables log(tk)−log(tk−1). This
property of the log-waiting time distribution is very well
fulfilled by our data.

4 Models and dynamics

As glassy dynamics is insensitive to many details of the in-
teractions, computational convenience is a prime criterion
for choosing a test model. Spin glass models are compar-
atively easy to simulate and have been investigated ex-
perimentally and numerically for more than twenty years.
The lack of a comprehensive and coherent picture of their
dynamics and statics furthermore endows them with con-
siderable intrinsic interest.

This section demonstrates that a simple and consistent
geometrical picture of the spin glass energy landscape is
obtained with our ‘non-invasive’ exploration method. Cur-
rent spin glass issues are mentioned as needed, while a
more complete discussion can be found in Section 6.

We consider N Ising spins, where the energy of a spin
configuration s = {s1, . . . , sN} is given by

E(s) = −1
2

∑
i,j

Jijsisj , (4)

where the couplings Jij are symmetric, independent
Gaussian variables of unit variance. To test the impor-
tance of the topology of the system, we have simulated
lattices with periodic boundary conditions in both 2d, 3d
and 4d (N = Ld), where Jij are non-zero only if i and
j are lattice neighbors. Additionally, we have placed the
spins in a k-regular random graph, i.e. each spin interacts
with exactly k spins chosen at random.

We use single spin flip dynamics coupled with a re-
jectionless algorithm, the Waiting Time Method [39]. The
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latter generates a sequence of moves equal in probabil-
ity to the sequence of accepted moves in the Metropolis
algorithm. Thus, the results of this paper can also be ob-
tained with the standard Metropolis algorithm, albeit at
the price of considerably longer run times. The ‘intrinsic’
and size independent time variable t used throughout cor-
responds to the number of Monte Carlo (lattice) sweeps in
the Metropolis as well as to the physical time of a real ex-
periment. We refer to reference [39] for a detailed account
of the Waiting Time Method and to references [40,41] for
the first example of a rejectionless or ‘event driven’ simula-
tion algorithm and for a recent review. In all our runs, we
conventionally skip the data within the first 10 time units
in order to let the system settle down from the random
T = ∞ initial configuration.

5 Results

Figure 1 shows the average number of valleys nV (t) (which
is equal to the number of quakes leading from a valley
to another) observed in 3d at various low temperatures.
Neglecting the earliest part of the simulations where the
memory of the initial random spin configuration is still
present, nV (t) has a logarithmic shape. As the ratio of the
variance σ2

nV
(t) to nV (t) is constant and close to one (see

Fig. 2 of Ref. [15]), the statistics of valleys is essentially a
log-Poisson process, as expected in a record induced dy-
namics [14]. As this holds true for barrier records as well
(not shown), the ratio of the number of barrier records
to minima records is therefore constant on average. This
non-trivial geometrical feature of the spin glass landscape
has not previously been noted, and it provides the link to
an analytical description of the non-equilibrium dynamics
as a log-Poisson process [14,15].

The barely perceptible curvature seen in Figure 1 for
large t decreases systematically as the system size in-
creases at a fixed temperature, as shown in the insert.
The sub-logarithmic form of nV (t) means that the likeli-
hood that a record in low energy follows a barrier record
decreases very slowly, but systematically as the system
ages. Taking into consideration that the curvature seems
to vanish in the limit of a very large system (see Fig. 2 of
Ref. [13], which shows that the slope of the straight part
of nV (t) seems to be proportional to log(N)), we surmise
that its presence reflects the increasing difficulty in finding
new low energies as the ground state is approached.

In summary, the series of quakes moving the system
from one valley to the next can be meaningfully ideal-
ized into a log-Poisson process discussed in the previous
section, if one disregards the curvature of the data. How
record events are distributed in time is insensitive to the
properties of the stochastic process from which the records
are drawn [14]. In our case Figures 1 and 5 have a weak
temperature dependence, as opposed to the strong T de-
pendence of the underlying fluctuations. Finally, we note
that identical results with respect to nV (t) are also found
in 2d, 4d and random graphs.

The rest of this section deals with two scaling plots
similar to those presented in reference [13] (Figs. 2 and 4),

Fig. 1. The average number of valleys nV visited as a function
of time in 3d Gaussian spin glasses with N = 163 spins. For
t > 100 a curvature is barely discernible. The insert shows
nV for system sizes L = 6, 8, 10 and 12 (full lines), as well as
L = 16 (dashed line as in the main panel).

as well as new results concerning the scaling of Hamming
distances (Fig. 3) between the local minima of contiguous
valleys. Finally, the statistics of the residence time and
the fraction thereof spent before hitting the lowest energy
state in the valley is analyzed, along with the correlations
between the minima of the valleys.

5.1 Scaling of barriers

The data shown in this section are averages over many
thousands of realizations of the couplings Jij and cover
a wide range of low temperatures and system sizes. The
raw data for each T and N have very little scatter, and
the main sources of error are systematic. For example,
our finite runtimes of t = 106, combined with the very
broad distribution of residence times in the valleys, bias
the average energy of valleys discovered late in the process,
since only the ‘faster’ trajectories are able to explore these.
The data are parameterized by the valley index i.

In our plots the scaling of the ordinate is given in the
corresponding labels. The value of the valley index i is
shifted from one data set to another by up to one unit.
This corresponds to a multiplicative shift of the age, and
compensates for the arbitrariness of skipping data within
the first 10 time units after the quench, irrespective of
temperature and system size.

Figure 2 is a scaling plot of the energy barrier Bi which
on average must be surmounted in order to leave the i’th
valley. The system is a k-regular random graph with k = 6,
i.e. the same number of links per spin as in 3d. Bi is seen
to scale in a simple way with the temperature and the size
of the system: Bi(N, T ) = Bi(NaT b), where a = 0.38(2)
and b = 1.8(1). Interestingly, the very same values of a
and b are found when scaling the barrier heights in 2d, 3d
and 4d lattices as well (see e.g. Fig. 3 in Ref. [13]). So, in
addition to the non trivial fact that a straightforward two
parameter fit works very well, the values of the scaling
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Fig. 2. Average energy barrier records B separating contigu-
ous valleys in random graph spin glass landscapes are scaled
with system size N and temperature T as indicated in the
ordinate label and plotted versus the valley index. The data
points are based on N = 4096 and T = 0.3, ..., 0.7 as well
as T = 0.5 and N = 1000, ..., 16000. The same scaling form
B ∼ N0.38T 1.8 applies equally well to our 2d, 3d, and 4d data.

exponents seem universal. As the next section will reveal,
this universality is also found when looking at energy min-
ima and the Hamming distance between them.

The close to linear shape of the scaling plot shows that
the barrier heights between valleys gradually increase.
Again, we stress that the barriers discussed are those
found along an unperturbed trajectory, end hence unlikely
to be the lowest barriers between energy minima in con-
tiguous valleys.

Since the exponent a is positive, the quakes do not
remain localized to a finite set of spins in the macro-
scopic limit. Some information on the size and shape of
the quakes can be inferred from the scaling law for the
energy barrier, if we assume that quakes correspond to
the motion through the system of a generalized domain
wall. Letting m be the number of spins typically involved
in a quake, we write B ∝ mx for some exponent x > 0.
Were the barrier energy the outcome of a fluctuation, i.e.
the sum of m contributions of random sign, the behavior
would be diffusion-like, with x = 1/2. However, since the
barrier crossing process favors low-energy states, we ex-
pect a lower barrier energy, i.e. x < 1/2. As m ∝ N0.38/x

and m ≤ N , we conclude that x ∈ [0.38, 0.5]. In sum-
mary, quakes have a fractal shape with exponent 0.38/x,
and are more space filling than a conventional domain wall
in d ≤ 4.

An explanation of the strongly non-Arrhenius T de-
pendence of the exponent b involves entropic effects and
the connection between the quasi-equilibrium dynamics
in configuration space and in real space. The qualitative
argument given below predicts that the barriers grow lin-
early with the valley index, and that b = 2 which is close
to the actual value of b = 1.8. The discrepancy might
arise because we neglect that domain sizes are distributed
quantities.

In real space, the relevant objects are connected do-
mains [26,42] of thermally equilibrated spins which slowly
grow in a sea of frozen spins reaching, on average, a lin-
ear length scale �(t) on a time scale t. In the progressively
longer quiescent periods between the quakes, these do-
mains do not interact, and their quasi-equilibrium prop-
erties are therefore determined by the local density of
states D(E) pertaining to the configurations accessible to
the spins constituting each domain. D(E) has been in-
vestigated by means of the lid-algorithm [23] for a num-
ber of different glassy systems [24,43–46], and has consis-
tently been found to have a close to exponential shape:
D(E) ≈ exp(E/T0(�)). The energy scale T0(�) is an upper
bound for the temperature at which metastability can hold
and decreases monotonically with the linear size of the
system considered [24]. While the results quoted pertain
to systems of fixed size and shape, preliminary investiga-
tions confirm that the same behavior applies to spin do-
mains of size �(t) which grow within a large system. In this
case T0(�) becomes a slowly decreasing function of time
through the time dependence of �(t), and asymptotically
approaches T from above. We anticipate that the marginal
stability of the valley visited implies that a domain is typ-
ically close to its maximal size, i.e. T0(�(t)) ≈ T .

Returning to Bi, we recall that energy barriers delimit-
ing valleys are extremal values in a series of O(t) indepen-
dent outcomes in a system of age t, and that each attempt
sees energy E with probability

Peq(E) ≈ exp
(
−E

T0 − T

T0T

)
. (5)

It follows [47] that the typical energy barrier scales as

B ∝ T0T

T0 − T
log t. (6)

Since the valley index grows linearly with log t, the linear
dependence on the valley index seen in Figure 2 is recov-
ered. Finally, since T0 ≈ T +ε for some small ε, one obtains
b ≈ 2 as anticipated.

5.2 Scaling of Hamming distances and energies

The fact that contiguous valleys contain rather different
low energy configurations is shown in Figure 3, which de-
picts the scaling of the Hamming distance H (number of
spins which differ in their orientation) separating the con-
figurations of lowest energy at the bottom of the two val-
leys in 3d lattices. Again, a simple scaling relation of the
kind Hi(N, T ) = Hi(NaT b) is found in the d-dimensional
lattices simulated as well as in regular graphs. The value
of a = 0.95(2) holds universally, i.e. in all systems simu-
lated, and it indicates that the number of spins involved is
nearly an extensive quantity. The temperature exponent
b = 1.7(1) seems to depend slightly on the topology; it
has a slightly different value for very low temperatures
such as T = 0.3. In short, near-perfect data collapse does
not seem possible for the whole range of low temperatures
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Fig. 3. The average Hamming distance H between the low-
est energy configurations of two contiguous valleys in 3d spin
glasses is plotted as a function of the valley index. Combi-
nations of T = 0.5 and L = 8, 10, 13, 16, 20, 30, 40 as well as
L = 16 and T = 0.4, ..., 0.8 are included. Again, the scaling
exponents of N and T are independent of the topology of the
networks.

simulated. Together with the inherently limited range of
low temperatures, this suggests that scalings with respect
to temperature should be interpreted cautiously.

We must emphasize that caution must be exercised
when scaling the data in Figures 2–4 for large values of
the valley index: Since some runs only reach a few val-
leys, averages for larger valley indices become biased. This
seems particularly important when looking at Hamming
distances. Thus, we only plot data for valleys reached by
at least 95% of all runs. By lowering this threshold to, say,
80%, one would clearly see that the added data points lie
below the master curve.

The strong temperature dependence of H in Fig-
ure 3 is remarkable considering that the energies of the
states involved are virtually independent of temperature,
as implied by Figure 4 and as one would expect for ac-
tual minima. It follows that the observed minima are
nearly degenerate, which is also expected in spin glasses.
The T dependence of H is likely due to the fact that
at higher T the barriers overcome are higher, and hence
the number of spins involved in a quake is larger. In the
simplest scenario where the ‘downhill’ part of the quake
does not substantially change this number, m, one can
assume m ∝ H ∝ N0.95. The energy of the barrier
state, which scales as B ∝ N0.38, must be carried by
the m spins involved. With B ∝ mx ∝ N0.95x, we find
x ≈ 0.38/0.95 = 0.4, in agreement with the considera-
tions in the previous section.

The energy difference ∆i between the state of lowest
energy in the first and the ith valley is plotted in Figure 4
for 2d and 3d lattices. ∆i(N, T ) = ∆i(NaT b) produces
a nice data collapse, with a = 0.87(3) and b = 0.2(1).
Again, these exponents are found in all topologies sim-
ulated, as emphasized by the 2d data in the insert. The
2d data bends slightly more than the 3d data in the main
panel, preventing the ultimate data collapse. This is true
in general of Figures 2–4: although the same scaling form

Fig. 4. The average difference ∆ between the states of lowest
energy found in the first and the i’th valley is plotted versus
i. The data for 3d systems is presented in the main panel,
where the combinations of L and T shown are as in Figure 3.
The insert shows that the same scaling exponents work equally
well in 2d, where combinations of T = 0.4 and L = 30, ..., 100
as well as L = 64 and T = 0.2, ..., 0.7 are plotted.

holds across 2d, 3d, 4d, and k-regular random graphs, they
have slightly different curvatures.

The linear trend in Figure 4 means that the lowest
energy decreases (almost) logarithmically with the age,
a feature already implicit in the early investigations by
Grest et al. [48]. It also implies that the energy differ-
ence between neighboring valleys remains approximately
constant along a trajectory. This means that the energy
‘gain’ induced by a quake per participating spin is of order
N0.87/N0.95 ≈ O(1) for the range of system sizes investi-
gated. In other words, the height of the barrier which must
be overcome to enter a new valley as well as the overlap
between them depend strongly on the temperature, while
the amount of energy gained is nearly independent of T .
Hence, lowering the temperature only slows down the pro-
cess of finding energetically similar valleys. Finally, we
mention that the starting point E1 when measuring ∆i is
only slightly T -dependent. If this were not the case, we
could not claim the similarity of valleys as stated above.

To sum up, the plots of Figures 2–4 tell us that barri-
ers, Hamming distances, and energies of the minima of the
valleys can all be scaled with respect to size and tempera-
ture in a simple way. Furthermore, the scaling exponents
are universal in the sense that the same values of the lat-
ter are found in d-dimensional Euclidean lattices as well
as in regular random graphs. This highlights, of course,
the strongly non-equilibrium nature of our results.

5.3 Residence time distribution and superaging

The distribution of time spent in ‘traps’ or valleys of the
energy landscape has, to the best of our knowledge, never
been measured by others in simulations of spin glass mod-
els. The assumed form of this residence time distribution
enters heuristic scenarios of spin glass relaxation [49,50],
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Fig. 5. The main panel shows the probability that the resi-
dence time tr is less than t for valleys entered at tw for a broad
range of tw. The abscissa is the scaled variable t/tµ

w. The insert
shows that the pure aging t/tw scaling predicted by log-Poisson
statistics is a fair but far less satisfactory approximation. The
system is a spin glass on a k-regular random graph with k = 6.

as well as the log-Poisson description of non-equilibrium
relaxation [15,38].

We consider the probability R(t | tw) that the resi-
dence time tr in a valley entered at age tw be less than t.
As with the scaling plots in the previous sections, a clear
picture emerges which lends support to the usefulness of
the method for identifying valleys described in Section 2.

Before discussing the numerical results in any detail,
we present some theoretical remarks on its expected form
for a log-Poisson process. Assuming a pure log-Poisson
process for tw > 1, the ‘log waiting time’ ln(tr+tw)−ln(tw)
is exponentially distributed with average 1/α, where α =
dnV /d ln t is the logarithmic slope of the curves in Fig-
ure 1. For any x > 0, the probability of tr > tw(ex − 1)
is therefore e−αx. Taking t/tw = ex − 1, the age-scaled
residence time probability distribution is

R(t | tw) = 1 −
(

tw + t

tw

)−α

. (7)

This results also follows directly from equation (2) by not-
ing that R(t | tw) = 1 − P0(tw, tw + t). Since α > 1 [15],
the distribution has the finite average 〈tr〉 = tw/(α − 1).
Equation (7) has been shown to fit the empirical residence
remarkably well [15].

The t/tw scaling form is often called pure aging, as
opposed to super- or sub-aging where the scaled variable
is t/tµw, with µ > 1 or µ < 1, respectively. Beside Fig-
ure 5, superaging of the thermal correlation C(tw, tw + t)
has been observed in numerical investigations of spin
glasses [51], while most experimental data show sub-
aging [52,53]. Very recent experimental work [37] shows
that subaging of the thermoremanent magnetization is a
consequence of the finiteness of the cooling rate. In the
limit of a large cooling rate µ approaches one and pure
aging is obtained.

The empirical data of Figure 5 are for random graphs
of N = 16000 spins at T = 0.5. As with all the scaling

plots presented so far, the quality of the fit is equally con-
vincing in d-dimensional lattices. To study the age depen-
dence of R(t | tw), the valleys entered are analyzed sepa-
rately for a broad range of waiting time tw = 102, ..., 105.
As the insert shows, a t/tw scaling is a fair approximation,
neglecting the small but systematic drift to the right as
tw grows.

The main panel reveals that an excellent data collapse
can be obtained with

R(t | tw) = R(t/tµw), (8)

where µ = 1.055. The growth of the residence time with
tµw shows that the valleys explored become more stable as
the system grows older, which concurs with the growth law
for the barriers given in Figure 2. Physically, this means
that, compared to the idealized log-Poisson case, the res-
idence time in a valley grows faster than the age. This
deviation from log-time homogeneity is likely due to the
already mentioned fact that it becomes relatively harder
to find a new valley as the ground state is approached [38].

Allowing µ to depend on T , the scaling works well
for all temperatures up to T = 0.8. dµ/dT > 0 is ob-
served [38], i.e. the superaging effect becomes more pro-
nounced as T increases. Noting that simulations slightly
below the critical temperature, i.e. at the high end of the
low temperature phase, are able to explore lower energy
regions in the same span of time, this strengthens our hy-
pothesis that deviations from t/tw scaling are a reverber-
ation of the finiteness of the ground state energy. As such,
these deviations can be expected to become less important
the larger the system is, as they indeed do [38].

5.4 Correlations

We have investigated the overlap between configurations
m and m + k for m ≤ 5 and k ≤ 12 and found that the
form

c(m, m + k) = c∞(m) + (1 − c∞(m))e−γ(m)k (9)

fits the data for our range of low temperatures in euclidean
lattices as well as in random regular graphs. Only in 2d do
we find significant deviations, as expected considering that
the aging is interrupted in this case [42]. As an example,
Figure 6 shows c(5, 5 + k) in 4d models. A similar plot
for c(1, 1 + k) in 3d systems can be found in Figure 4 of
reference [15], where the connection to the experimentally
available non-equilibrium exponent λ is verified.

If the limiting value for k → ∞ of c(m, m + k),
c∞(m), were independent of m, it would coincide with the
Edwards-Anderson order parameter. Empirically, we find
a small m dependence, for which we have no physical in-
terpretation. The exponent γ also has a small and almost
linear m dependence. As equation (9) remains a heuris-
tic approximation of limited value, we have not pursued
the size and temperature dependence of the parameters
involved in equation (9). Still, we find it interesting that
a simple exponential parametrization in the number of
quakes k accurately describes the data.
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Fig. 6. The correlation between the valleys m and m + k for
m = 5 in 4d Euclidean lattices of size N = 84. The decay
is clearly exponential for low T . Again, this is observed in all
topologies tested.

5.5 Hitting time for the minima

Having argued that our method of partitioning the sam-
pled states into valleys leads to consistent results and pro-
vides useful insight into the coarse structure of complex
energy landscapes, it is natural to take a first look at the
rich internal structure of the valleys. The existence of such
a structure is implied by the wide distribution of residence
times, which requires a matching distribution of internal
energy barriers. Direct evidence is presented in this sec-
tion, where we consider the ‘hitting time’ thit elapsing
from the time of entry to the time where the state of low-
est energy is encountered.

Consider τ = thit/tr, the fraction of the residence time
spent ‘searching’ for the overall minimum within the val-
ley. We expect τ to be close to zero in a structureless val-
ley, where this minimum is reached soon after entry, and
close to one in the opposite limit of a rugged valley with
many internal local minima. In measuring the distribution
of τ , we keep track of the age tw at the time of entry, by
selecting entry times for a range of different tw. From the
outset, the empirical distribution G(τ | tw) could depend
on tw, but, as shown by Figure 7, there is practically no
dependence, except for T close to the critical temperature.

The right-skewed form of G for lower T values (the
picture is the same for any T ≤ 0.6) implies that by far
the greatest part of tr is spent before hitting the lowest
minimum: the system explores several sub-valleys, each
identified by its own local minimum, while it slides to-
ward states of lower energy. Equilibrium-like fluctuations
can only occur after the state of lowest energy which re-
mains at the bottom of the valley is hit. This time interval
is small compared to the total residence time, but never-
theless grows steadily with the valley index.

Since the measured shape of G at low T is almost
tw invariant, the distributions of both tr and thit must
both scale as tµw. We conclude that the process of hit-
ting the lowest minimum in a valley at low T is limited
by internal barrier crossing events, and that these barri-

Fig. 7. The location of the energy minimum within a valley
entered at time tw in 3d spin glasses with N = 163 spins. The
abscissa is the time relative to the entry and exit times. The
figure illustrates the highly right-skewed distribution found for
all low T , independent of tw. The insert shows that for higher T
the distribution flattens out as the age tw of the system grows.

ers themselves grow as the age increases and the valleys
become larger. The landscape geometry at constant T is
thus invariant under a time dilation, in agreement with
the general properties of a log-Poisson process, and may
be regarded as approximately self-similar. The temper-
ature independence of the distribution at low T leads to
the same conclusion: Lowering the temperature means ex-
ploring smaller valleys, which nevertheless retain the same
internal structure within a range of low temperatures.

As the temperature gets closer to the critical temper-
ature, a waiting time dependence appears: G(τ) remains
peaked around τ � 0.9, but smaller values of τ become
gradually more probable. The corresponding flattening of
the distribution of G(τ) for T = 0.8, a high temperature,
is shown in the insert of Figure 7. Since the number of
potentially new valleys diminishes in time because of the
lack of new low energy records, G must eventually become
highly left -skewed. While only a very slow trend toward
this situation can be seen in the main panel, the data for
the higher temperature in the insert seems to be heading
in that direction, in accordance with equilibration hap-
pening much faster at high T than low T .

We end this section by noting that, like most other
quantities presented in this paper, similar results for
G(τ | tw) are found across all systems simulated.

6 Coarse grained landscape description

Having argued that log-Poisson statistics is a (slightly)
idealized description which leads to pure aging and other
dynamical features found in experiments, we turn to the
physical mechanism behind the selection of the attractors
and, more broadly, consider the implications of our results
for pertinent mesoscopic models of complex landscapes.
We do not attempt to deal with domain growth and other
real space issues in any detail. These aspects, though very
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important for a complete understanding of complex re-
laxation, are too strongly connected to quasi-equilibrium
issues which lie beyond the scope of this paper.

The applicability of log-Poisson statistics to barrier
records only implies that the trajectory fully decorrelates
between successive events, as can be expected for an ac-
tivated process in a landscape with many local minima.
The new and important information about the landscape
geometry lies in the fact that barrier records are required
in order to find new minima records. This explains why
the log-Poisson statistics is equally relevant for barriers
as for minima. Secondly, and more importantly, it implies
that the least stable, or marginally stable among the avail-
able attractors are those selected. Indeed, if at some stage,
very deep minima were to follow a shallow barrier, sub-
sequent barrier records would not produce new states of
record-low energy, and the log-Poisson description would
fail.

The close match between the depth of a valley and
the magnitude of the barrier record giving access to it
implies a quasi-continuum of available attractors and was
first noticed in connection with the noisy dynamics of a
driven dissipative system [14], where the phenomenon was
dubbed noise adaptation. That complex memory behavior
is linked to marginal stability of metastable attractors has
long been known for noiseless models of Charge Density
Waves [16,54]. The extremely simple automaton model
of Tang et al. [54] describes a sheet of elastically cou-
pled ‘balls’ driven along a sinusoidal potential by a pulsed
external force. A recent study of a noisy version of this
model [10] showed that its non-equilibrium dynamics is
described by log-Poisson statistics and that the age of the
system can be reset by a change of the elastic coupling
constant.

The physical origin of the bias toward shallow attrac-
tors in thermal glassy dynamics is likely to be entropic,
i.e. simply the fact that shallow attractors vastly outnum-
ber deeper ones, in line with the general observation that
quenches usually produce poor minima. To support such
bias for a range of low temperatures, the density of en-
ergy minima must dwarf the Boltzmann factor and hence
increase at least exponentially with the energy. This con-
curs with the outcome of numerical exhaustive investi-
gations of the local configuration space structure of dif-
ferent glassy systems [23,24,43,45,46,55,56] which were
performed with the lid method [23,44]. In all cases the
local density of states and the local density of minima are
nearly exponential functions of the energy.

An exponential density of states in connection with
activated dynamics implies a dynamical glass transition.
This very feature was built into the tree model of complex
relaxation proposed and analyzed by Grossmann et al. [57]
and later studied in more detail in [58,59]. It is also incor-
porated in the even simpler trap model of Bouchaud [49]
which, nonetheless, is very different from tree models in
one important respect: trees have the lowest connectivity
possible for a connected set, while each trap of the trap
model is connected to all others.

Log-Poisson statistics only applies as long as new and
gradually more stable valleys remain available to the dy-
namics. The simplest way of modeling inequivalent val-
leys is through a hierarchy of energy barriers separating
degenerate states, which are organized in either a linear ar-
ray [60] or in a tree graph. Beside the models already men-
tioned, the latter approach is followed in [59–64]. Many
important features of complex relaxation can be repro-
duced in this model, but not the fact that in many sys-
tems, including spin glasses, the energy decreases logarith-
mically with the age. This can be achieved by introducing
non-degenerate local minima, as done in the so-called LS
tree [7,65]. The minima have energies which on average
decrease linearly with the size of the barrier overcome, i.e.
in the same overall fashion as Figure 4. All hierarchical
models with a fixed set of energy barriers fail, however, to
incorporate the strongly T dependent way in which barri-
ers are dynamically selected.

In Bouchauds model, trap energies are exponentially
distributed and hence non-degenerate. That deeper min-
ima are gradually explored is a statistical consequence of
the (assumed) infinite average of the residence time in a
trap. If traps and valleys can be identified, the results of
Section 5.3 are at variance with this interpretation. The
average residence time, which equals tw for α = 2, is, in
practice, slightly lower than tw. This is again reminiscent
of the situation encountered in tree models [7,59,61–65].
The distribution of barriers in tree models has a lower cut-
off, unlike the fractal description of configuration space of
Dotsenko [66,67], which better captures the growing im-
portance of gradually smaller barriers as the temperature
decreases.

A last important issue is the connection between the
energy barrier separating two configurations and the dis-
tance between them. For spin glasses the relevant metric
is the Hamming distance, which, according to Figures 2
and 3, on average bears a linear relationship to the en-
ergy barrier. A similar result was found in numerical work
on the SK model [68] by [19,69], and by the lid-method
(i.e. exact exhaustive enumeration) in [43] for short range
spin glasses. Since the latter investigations deal with the
small scale structures inside a ‘pocket’, while the present
ones are concerned with the large scale structures ex-
plored by the non-equilibrium dynamics, the agreement
in their outcome is further evidence of a self-similar land-
scape structure. Interestingly, the largest distance which
can be achieved for a fixed energy barrier grows exponen-
tially with the barrier [24]. A linear relationship between
energy and Hamming distance is assumed in tree models
of aging dynamics, see e.g. [63], and also in the barrier
model [60]. This is, however, not a crucial assumption for
aging, and other types of functional relationships can also
be utilized [7] successfully.

7 Summary and outlook

In this paper we have presented a general ‘non-invasive’
statistical method for complex energy landscape explo-
ration, especially designed to provide information on the
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metastable states actually explored by an unperturbed
aging process following a quench. The method has been
thoroughly tested on Ising spin glasses, and the results ob-
tained both match and extend the established knowledge
about spin glasses. In particular, most quantities investi-
gated obey simple scaling laws with universal scaling ex-
ponents. The view which emerges is that non-equilibrium
aging dynamics is steered by energy barrier records, which
are the only events capable of opening the route to new
valleys. Since this description has previously been shown
to apply to driven dissipative models and to evolution
modeling, a possible unified theory for non-equilibrium
glassy dynamics seems within reach.

A more complete picture can be obtained by look-
ing more closely into the fluctuation dynamics which may
differ across different systems. For spin glasses we have
argued that real space domains of (pseudo) thermalized
spins relax independently as long as the system as a whole
remains in the same valley. The present method opens
the possibility of identifying the quasi-equilibrium clus-
ters as defined by the dynamics itself: These clusters are
separated by a backbone of spins whose orientation re-
mains fixed within each valley and changes slowly from
one valley to the next, as seen in Figure 3. After the low-
est energy state in the valley has been hit and before the
next valley is entered, there is no drift toward the global
minimum. Hence, the spins fall into two categories only:
those which are frozen, and those which fluctuate in a
quasi-equilibrium fashion. The quasi-equilibrium clusters
can thus be extracted and their statistical properties, such
as e.g. the density of states, can be studied for each cluster
separately.
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mathematical argument in an early version of this work.
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